In a study of mice and monkeys, NIH funded researchers showed that they could prevent and reverse some of the brain injury caused by the toxic form of a protein called tau. The results, published in Science Translational Medicine, suggest that the study of compounds, called tau antisense oligonucleotides, that are genetically engineered to block a cell's assembly line production of tau, might be pursued as an effective treatment for a variety of disorders.

Cells throughout the body normally manufacture tau proteins. In some disorders, toxic forms of tau clump together inside dying brain cells and form neurofibrillary tangles, including Alzheimer's disease, tau-associated frontotemporal dementia, chronic traumatic encephalopathy and progressive supranuclear palsy. There are currently no effective treatments for combating toxic tau.

"This compound may literally help untangle the brain damage caused by tau," said Timothy Miller, M.D., Ph.D., the David Clayson Professor of Neurology at Washington University, St. Louis, and the study's senior author.

Antisense oligonucleotides are short sequences of DNA or RNA programmed to turn genes on or off. Led by Sarah L. DeVos, a graduate student in Dr. Miller's lab, the researchers tested sequences designed to turn tau genes off in mice that are genetically engineered to produce abnormally high levels of a mutant form of the human protein. Tau clusters begin to appear in the brains of 6-month-old mice and accumulate with age. The mice develop neurologic problems and die earlier than control mice.

Injections of the compound into the fluid filled spaces of the mice brains prevented tau clustering in 6-9-month-old mice and appeared to reverse clustering in older mice. The compound also caused older mice to live longer and have healthier brains than mice that received a placebo.

"These results open a promising new door," said Margaret Sutherland, Ph.D., program director at NIH's National Institute of Neurological Disorders and Stroke (NINDS). "They suggest that antisense oligonucleotides may be effective tools for tackling tau-associated disorders."

Currently researchers are conducting early phase clinical trials on the safety and effectiveness of antisense oligonucleotides designed to treat several neurological disorders, including Huntington's disease and amyotrophic lateral sclerosis. The U.S. Food and Drug Administration recently approved the use of an antisense oligonucleotide for the treatment of spinal muscular atrophy, a hereditary disorder that weakens the muscles of infants and children.

Source: Science Daily

Return to the news archive

Job Search

View Site in Mobile | Classic
Share by: